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Introduction

Halmos 1969: Two projections P, Q € B(*) in generic position are of the form

[ o _[c® ¢S
P‘[o 0}’ Q_{CS 52]’

with contractions C, S € B(K) satisfying C? + S* = Ic. (Two Projection Theorem)
Pedersen 1968: The universal C*-algebra generated by two projections p, g is

{f € C(]0,1], M») | f(0), f(1) diagonal}.
For a historical overview see Bottcher, Spitkovsky: A gentle guide to the basics of two
projections theory (2009).

This talk: A class of C*-algebras generated by two partitions of unity + a generalization of
Halmos’ /Pedersen’s results to more projections.
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Why you can’t generalize Halmos’ Two Projections Theorem

Theorem (Davis 1955)

For any Hilbert space H there exist three projections Py, P>, Ps € B(H) such that
B(H) is generated by I, P1, P>, Ps as a von Neumann algebra.

. and when you can:

» Banach algebra generated by two idempotents (Roch—Silbermann 1988)

» C*-/Banach algebra generated by one projection/idempotent and one
partition of unity with additional relations (Bottcher et al. 1996)
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Bipartite graph C*-algebras

Definition
Given a bipartite graph G = (U, V, E) let C*(G) be the universal C*-algebra generated by a
family of projections (px)xcuuv subject to the following relations:

ZPU =1= Z Pv; (GP1)

uev vev
pupy =0 if {u,v} € E. (GP2)

Example
C*(Km,n) = C" xc C", C*(Kz2) = C*(p, q) from Pedersen’s theorem.

There is a connection to Trieb—\Weber—Zenner's hypergraph C*-algebras:

Theorem (S. 2025)

To know which hypergraph C*-algebras are nuclear you need to know which bipartite graph
C*-algebras are nuclear.
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Alternative generators of bipartite graph C*-algebras

Proposition (S. 2026+)

Let G = (U, V,E) be a bipartite graph. Then C*(G) is the universal C*-algebra generated
by a family of elements (xe)ece satisfying

Xoxr =0 ifenfnuU=40, (GC1)
Xxexf =0 ifenfnNnVv =40, (GC2)
<Z Xe*> Xf = Xf, (GC3)
eckE
Xe (Z X;) = Xé7 (GC4)
feE

for all edges e, f € E, respectively. In particular, the x. are contractions which satisfy

XeXIXe = X2.
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Classification of bipartite graph C*-algebras

Question: When is C*(G) = C*(H) for two bipartite graphs G and H?

Lemma

The one-dimensional irreducible representations of C*(G) are in one-to-one correspondence
with the edges of G.

How to see this: Let 7 : C*(G) — C be a *-homomorphism. The 7w(py) for v € V are pairwise
orthogonal projections, thus there is exactly one vy € V with 0 # 7(py,) = 1.

Lemma

The two-dimensional irreducible representations of C*(G) are in one-to-one correspondence
with subgraphs of G that are isomorphic to K 5.

Theorem (S. 2026+ )
It is
C(G)=C'(H) < Spec,(C7(G)) = Spec,(C*(H)),

where Spec., C Spec is the space of one- and two-dimensional irreducible representations.
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Generalizing Halmos’ /Pedersen’s theorem to bipartite graph C*-algebras



Main problem for bipartite graph C*-algebras

Let G = (U, V, E) be a bipartite graph. We want to find a concrete description

) }

for some space X, n € N and conditions “(?)" generalizing

C*(G) = {f € C(X, My)

C*(Kap2) = C*(p,q) =2 {f € C([0,1], M>) | f(0), f(1) diagonal}.

In particular, this should help answer the following question:
Question: For which bipartite graphs G is C*(G) nuclear?

Proposition
If Ko3 C G, then C? xc C2 is a quotient of C*(G) and the latter is not nuclear.

Dream: Find a concrete description as above for all G with K>3 ¢ G and thus prove that
these algebras are nuclear.

Reality: We can show that for the hypercubes Q5.
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Related work on N projections

Bottcher—Gohberg—Karlovich—Krupnik—Roch-Silbermann—Spitkovsky (1996) investigated
Banach algebras BB generated by one idempotent P and a partition of unity p1,..., pon
satisfying

P(p2i—1 + p2i)P = (p2i—1 + p2i) P
and
(L = P)(p2i + pai+1)(1 = P) = (p2i + pai1)(1 — P)
for all i.

These Banach algebras occur as algebras generated by singular integral operators.

Theorem (Bottcher et al. “N Projections Theorem” 1996)

For every x € o(B) \ {0,1} one has a *-homomorphism
Fx : B — Moy

with F(pi) = diag(...,0,1,0,...). Further, ...
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Hypercubes

o
@1 @ Qs
The hypercube Q, has 2" vertices. The vertices are {1,...,2"} and two vertices are

connected if they differ in exactly one binary digit. It is a bipartite graph with bipartition

U, = {vertices with an even number of 1's in the binary representation},

V,, = {vertices with an odd number of 1's in the binary representation}.
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Hypercube C*-algebras (1)

Example
1. Forn=1itis C*(Q) =C.
2. For n =2 one has Q> = K32 and thus
C*(Q2) = C*(p, q) = {f € C([0,1], M2) | £(0), (1) diagonal}.

3. For n =3, C*(Qs) is generated by 4 + 4 projections p1, p2, ps3, pa
and qi1, @2, g3, qa satisfying

pr+p2tps+pa=1=q+q+qgs+qs,
piqg=0 ifi=j.
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Hypercube C*-algebras (2)

Goal: Describe C*(Qy) as {f € C(X, M) | (?)}.

Lemma
For every vertex x, the corner pxC*(Qn)px is commutative.

Proof.

Combinatorial argument: The corner has dense subset spanned by p«p,, ... py, px for paths
Xy1 ... Ykx in the hypercube Q,. For a segemnt y;yi+1/it2 with y; # yii2 there is a unique
Yiy1 # yir1 such that yiy!,1yito is also a path. The relations (GP1) and (GP2) yield

Py; Pyi11Pyi2 = —Py;iPy!

i+1 py;+2 :

Using this one shows

PxPy; - - - PyPx = PxPy; - - - PyiPx = (PxPyy - - - Py Px) "
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Hypercube C*-algebras (3)

Recall that we want to generalize
C™(p,q) =2 C* (@) = {f € C([0,1], M2) : £(0), (1) are diagonal}.

Recall the n-simplex A, = {[to, ..., ta] €[0,1]"" 1 tg +--- +t, = 1}. A pointt € A, is in
the boundary of A, if at least one of its entries is zero.

For every boundary point t € 9A, and matrix A € M,,—1 we say that A is in t-block
diagonal form if it can be written as a block matrix where the position of the blocks
depends on the position of t on the boundary of A,,.

Theorem (S. 2026+)

There is an isomorphism

C*(Qn) 2 {f € C(An—1, Myn1) : f(t) is in t-block diagonal form}.

11/12



Application to magic isometries

A 2 x 4-magic isometry is a 2 X 4-matrix with entries from a C*-algebra A such that the
rows form partitions of unity and the projections are orthogonal along columns.

pP1 P2 p3 pa
di Qg2 Qg3 qQqa

The universal C*-algebra generated by its entries is C*(Qs).

Problem (Banica—Skalski—Sottan 2012): Can you complete any such magic isometry to a
4 x 4-magic unitary by adding additional projections in a third and fourth row?
Proposition

Any 2 X 4-magic isometry can be completed to a 4 x 4-magic unitary.

Proof.

We have an explicit description of the universal C*-algebra generated by the entries of the magic
isometry. On the other hand, Banica—Collins (2008) have proved a faithful representation of C(S;),

the universal C*-algebra generated by the entries of a 4 X 4-magic unitary. One can show that every
irrep of C*(Q3) is a restriction of an irrep of C(S;"), and the claim follows. O

Thank you!
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