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Saarland University

Oslo December 2025



Introduction

Halmos 1969: Two projections P,Q ∈ B(H) in generic position are of the form

P =

[
IK 0
0 0

]
, Q =

[
C 2 CS
CS S2

]
,

with contractions C ,S ∈ B(K) satisfying C 2 + S2 = IK. (Two Projection Theorem)

Pedersen 1968: The universal C*-algebra generated by two projections p, q is

{f ∈ C([0, 1],M2) | f (0), f (1) diagonal}.

For a historical overview see Böttcher, Spitkovsky: A gentle guide to the basics of two
projections theory (2009).

This talk: A class of C*-algebras generated by two partitions of unity + a generalization of
Halmos’/Pedersen’s results to more projections.
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Why you can’t generalize Halmos’ Two Projections Theorem

Theorem (Davis 1955)

For any Hilbert space H there exist three projections P1,P2,P3 ∈ B(H) such that
B(H) is generated by I ,P1,P2,P3 as a von Neumann algebra.

... and when you can:

▶ Banach algebra generated by two idempotents (Roch–Silbermann 1988)

▶ C*-/Banach algebra generated by one projection/idempotent and one
partition of unity with additional relations (Böttcher et al. 1996)
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Bipartite graph C*-algebras

Definition
Given a bipartite graph G = (U,V ,E) let C∗(G) be the universal C∗-algebra generated by a
family of projections (px)x∈U∪V subject to the following relations:∑

u∈U

pu = 1 =
∑
v∈V

pv , (GP1)

pupv = 0 if {u, v} ̸∈ E . (GP2)

Example

C∗(Km,n) = Cm ∗C Cn, C∗(K2,2) = C∗(p, q) from Pedersen’s theorem.

There is a connection to Trieb–Weber–Zenner’s hypergraph C*-algebras:

Theorem (S. 2025)

To know which hypergraph C*-algebras are nuclear you need to know which bipartite graph
C*-algebras are nuclear.

3/12



Alternative generators of bipartite graph C*-algebras

Proposition (S. 2026+)

Let G = (U,V ,E) be a bipartite graph. Then C∗(G) is the universal C∗-algebra generated
by a family of elements (xe)e∈E satisfying

x∗
e xf = 0 if e ∩ f ∩ U = ∅, (GC1)

xex
∗
f = 0 if e ∩ f ∩ V = ∅, (GC2)(∑

e∈E

x∗
e

)
xf = xf , (GC3)

xe

(∑
f∈E

x∗
f

)
= xe , (GC4)

for all edges e, f ∈ E, respectively. In particular, the xe are contractions which satisfy
xex

∗
e xe = x2

e .
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Classification of bipartite graph C*-algebras

Question: When is C∗(G) ∼= C∗(H) for two bipartite graphs G and H?

Lemma
The one-dimensional irreducible representations of C∗(G) are in one-to-one correspondence
with the edges of G.

How to see this: Let π : C∗(G) → C be a *-homomorphism. The π(pv ) for v ∈ V are pairwise

orthogonal projections, thus there is exactly one v0 ∈ V with 0 ̸= π(pv0 ) = 1.

Lemma
The two-dimensional irreducible representations of C∗(G) are in one-to-one correspondence
with subgraphs of G that are isomorphic to K2,2.

Theorem (S. 2026+)

It is
C∗(G) ∼= C∗(H) ⇔ Spec≤2(C∗(G)) ∼= Spec≤2(C∗(H)),

where Spec≤2 ⊂ Spec is the space of one- and two-dimensional irreducible representations.

5/12



Generalizing Halmos’/Pedersen’s theorem to bipartite graph C*-algebras



Main problem for bipartite graph C*-algebras

Let G = (U,V ,E) be a bipartite graph. We want to find a concrete description

C∗(G) ∼= {f ∈ C(X ,Mn) | (?) }

for some space X , n ∈ N and conditions “(?)” generalizing

C∗(K2,2) = C∗(p, q) ∼= {f ∈ C([0, 1],M2) | f (0), f (1) diagonal}.

In particular, this should help answer the following question:

Question: For which bipartite graphs G is C∗(G) nuclear?

Proposition

If K2,3 ⊂ G, then C2 ∗C C3 is a quotient of C∗(G) and the latter is not nuclear.

Dream: Find a concrete description as above for all G with K2,3 ̸⊂ G and thus prove that
these algebras are nuclear.

Reality: We can show that for the hypercubes Qn.
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Related work on N projections

Böttcher–Gohberg–Karlovich–Krupnik–Roch–Silbermann–Spitkovsky (1996) investigated
Banach algebras B generated by one idempotent P and a partition of unity p1, . . . , p2N
satisfying

P(p2i−1 + p2i )P = (p2i−1 + p2i )P

and

(1 − P)(p2i + p2i+1)(1 − P) = (p2i + p2i+1)(1 − P)

for all i .

These Banach algebras occur as algebras generated by singular integral operators.

Theorem (Böttcher et al. “N Projections Theorem” 1996)

For every x ∈ σ(B) \ {0, 1} one has a ∗-homomorphism

Fx : B → M2N

with Fx(pi ) = diag(. . . , 0, 1, 0, . . . ). Further, . . .
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Hypercubes

Q1 Q2 Q3

The hypercube Qn has 2n vertices. The vertices are {1, . . . , 2n} and two vertices are
connected if they differ in exactly one binary digit. It is a bipartite graph with bipartition

Un = {vertices with an even number of 1’s in the binary representation},
Vn = {vertices with an odd number of 1’s in the binary representation}.
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Hypercube C*-algebras (1)

Example

1. For n = 1 it is C∗(Q1) = C.

2. For n = 2 one has Q2 = K2,2 and thus

C∗(Q2) = C∗(p, q) ∼= {f ∈ C([0, 1],M2) | f (0), f (1) diagonal}.

3. For n = 3, C∗(Q3) is generated by 4 + 4 projections p1, p2, p3, p4
and q1, q2, q3, q4 satisfying

p1 + p2 + p3 + p4 = 1 = q1 + q2 + q3 + q4,

piqj = 0 if i = j .
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Hypercube C*-algebras (2)

Goal: Describe C∗(Qn) as {f ∈ C(X ,Mk) | (?)}.

Lemma
For every vertex x, the corner pxC

∗(Qn)px is commutative.

Proof.
Combinatorial argument: The corner has dense subset spanned by pxpy1 . . . pykpx for paths
xy1 . . . ykx in the hypercube Qn. For a segemnt yiyi+1ii+2 with yi ̸= yi+2 there is a unique
y ′
i+1 ̸= yi+1 such that yiy

′
i+1yi+2 is also a path. The relations (GP1) and (GP2) yield

pyi pyi+1pyi+2 = −pyi py′i+1
pyi+2 .

Using this one shows

pxpy1 . . . pykpx = pxpyk . . . py1px = (pxpy1 . . . pykpx)∗.
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Hypercube C*-algebras (3)

Recall that we want to generalize

C∗(p, q) ∼= C∗(Q2) ∼= {f ∈ C([0, 1],M2) : f (0), f (1) are diagonal}.

Recall the n-simplex ∆n = {[t0, . . . , tn] ∈ [0, 1]n+1 : t0 + · · · + tn = 1}. A point t ∈ ∆n is in
the boundary of ∆n if at least one of its entries is zero.

For every boundary point t ∈ ∂∆n and matrix A ∈ M2n−1 we say that A is in t-block
diagonal form if it can be written as a block matrix where the position of the blocks
depends on the position of t on the boundary of ∆n.

Theorem (S. 2026+)

There is an isomorphism

C∗(Qn) ∼= {f ∈ C(∆n−1,M2n−1) : f (t) is in t-block diagonal form}.
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Application to magic isometries

A 2 × 4-magic isometry is a 2 × 4-matrix with entries from a C*-algebra A such that the
rows form partitions of unity and the projections are orthogonal along columns.

[
p1 p2 p3 p4
q1 q2 q3 q4

]
The universal C*-algebra generated by its entries is C∗(Q3).

Problem (Banica–Skalski–So ltan 2012): Can you complete any such magic isometry to a
4 × 4-magic unitary by adding additional projections in a third and fourth row?

Proposition

Any 2 × 4-magic isometry can be completed to a 4 × 4-magic unitary.

Proof.
We have an explicit description of the universal C*-algebra generated by the entries of the magic
isometry. On the other hand, Banica–Collins (2008) have proved a faithful representation of C(S+

4 ),
the universal C*-algebra generated by the entries of a 4× 4-magic unitary. One can show that every
irrep of C∗(Q3) is a restriction of an irrep of C(S+

4 ), and the claim follows.

Thank you!

12/12



References

▶ Halmos: Two subspaces (1969)

▶ Pedersen: Measure theory for C*-algebras II (1968)

▶ Roch, Silbermann: Algebras generated by idempotents and the symbol calculus for singular
integral operators (1988)
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