Hypergraph C*-algebras

Björn Schäfer

Saarland University

20th Workshop: Noncommutative Probability, Operator Algebras and Related Topics, with Applications at Będlewo 2025

= ------ 1/11

Introduction

Moritz Weber, Mirjam Trieb and Dean Zenner introduced hypergraph C*-algebras as a generalization of graph C*-algebras.

Unlike graph C*-algebras, these can be non-nuclear.

To study nuclearity of hypergraph C^* -algebras, one needs to study certain C^* -algebras $C^*(G)$ generated by two partitions of unity associated to a bipartite graph G.

For the hypercubes Q_n , $C^*(Q_n)$ yields a nice generalization of $C^*(p,q)$, the universal C*-algebra generated by two projections p and q.

_____ 2/11

Outline

- 1. Hypergraph C*-algebras
- 2. Bipartite graph C*-algebras
 - Nuclearity
 - Classification
 - Hypercubes

= ------- 3/11

Hypergraph C^* -Algebras (1/3)

A (finite) hypergraph H Γ is a tuple (E^0, E^1, r, s), where

- $ightharpoonup E^0$ is the (finite) set of *vertices* of HΓ,
- $ightharpoonup E^1$ is the (finite) set of *edges* of H Γ ,
- ▶ $r: E^1 \to \mathcal{P}(E^0)$ maps every edge to its *range* set,
- ▶ $s: E^1 \to \mathcal{P}(E^0) \setminus \{\emptyset\}$ maps every edge to its *source* set.

Example (1)

$$E^{0} = \{v, w\},$$

 $E^{1} = \{e\},$
 $s(e) = r(e) = \{v, w\}.$

■ --------- 4/1:

Hypergraph C^* -Algebras (1/3)

A (finite) hypergraph H Γ is a tuple (E^0, E^1, r, s) , where

- $ightharpoonup E^0$ is the (finite) set of *vertices* of HΓ,
- $ightharpoonup E^1$ is the (finite) set of *edges* of H Γ ,
- ▶ $r: E^1 \to \mathcal{P}(E^0)$ maps every edge to its *range* set,
- ▶ $s: E^1 \to \mathcal{P}(E^0) \setminus \{\emptyset\}$ maps every edge to its *source* set.

Example (2)

$$E^{0} = \{v, w\},$$

 $E^{1} = \{e_{1}, e_{2}, e_{3}\},$
 $s(e_{i}) = \{v, w\} \text{ for all } i \leq 3,$
 $r(e_{i}) = \emptyset \text{ for all } i < 3.$

 $H\Gamma$ is called **undirected** if every edge has empty range.

■ −−− −−− − 5/11

Hypergraph C^* -Algebras (2/3)

Let $H\Gamma = (E^0, E^1, r, s)$ be a (finite) hypergraph.

Definition (Weber, Zenner '22)

The hypergraph C^* -algebra $C^*(\mathrm{H}\Gamma)$ is the universal C^* -algebra generated by

- ▶ pairwise orthogonal projections p_v for $v \in E^0$,
- ightharpoonup partial isometries s_e for $e \in E^1$,

satisfying three relations (HR1), (HR2), (HR3).

$$s_e^* s_f = \begin{cases} \delta_{ef} \sum_{v \in r(e)} p_v, & r(e) \neq \emptyset, \\ \delta_{ef} s_e, & \text{otherwise,} \end{cases}$$
 for all $e, f \in E^1$, (HR1)

$$s_e s_e^* \le \sum_{v \in s(e)} p_v \text{ for all } e \in E^1,$$
 (HR2)

$$p_v \le \sum_{e:v \in s(e)} s_e s_e^*$$
 for all $v \in E^0$ with $\exists e \in E^1 : v \in s(e)$. (HR3)

Hypergraph C*-Algebras (3/3)

Recall the hypergraph $H\Gamma$ sketched below.

Then $C^*(\mathrm{H}\Gamma)=\mathbb{C}^2*_{\mathbb{C}}C(S^1)$ is **not nuclear**. [Zenner 2021]

Question: Which hypergraph C*-algebras are nuclear?

Theorem (S. 2024)

For every hypergraph $H\Gamma$ one can construct an undirected hypergraph $H\Delta$ such that $C^*(H\Gamma)$ is nuclear if and only if $C^*(H\Delta)$ is nuclear.

■ ---- 7/11

Bipartite Graph C*-Algebras

Definition

For a bipartite graph G=(U,V,E) with vertex sets U and V let $C^*(G)$ be the universal C^* -algebra generated by two families of projections $(p_u)_{u\in U}$ and $(p_v)_{v\in V}$ such that

- $\blacktriangleright \sum_{u \in U} p_u = 1 = \sum_{v \in V} p_v,$
- $p_u p_v = 0 \text{ if } \{u, v\} \not\in E.$

These C^* -algebras arise as hypergraph C^* -algebras of undirected hypergraphs and as subalgebras of hypergraph C^* -algebras.

Proposition

A dense subset of $C^*(G)$ is spanned by products $p_{x_1} \dots p_{x_k}$ where $x_1 \dots x_k$ is a path in G.

Example

If
$$G = K_{n,m}$$
 then $C^*(G) \cong \mathbb{C}^n *_{\mathbb{C}} \mathbb{C}^m \cong C^*(\mathbb{Z}_n * \mathbb{Z}_m)$.

■ -----

Nuclearity

Question: When is $C^*(G)$ nuclear?

Example

 $C^*(K_{2,3})\cong \mathbb{C}^2*_{\mathbb{C}}\mathbb{C}^3$ is not nuclear, $C^*(K_{2,2})\cong \mathbb{C}^2*_{\mathbb{C}}\mathbb{C}^2\cong C^*(p,q)$ is nuclear and subhomogeneous.

Proposition

If $G \subset H$, then $C^*(G)$ is a quotient of $C^*(H)$.

Thus, $C^*(G)$ can only be nuclear if $K_{2,3} \not\subset G$.

Open Question: Is $C^*(G)$ nuclear if and only if $K_{2,3} \not\subset G$?

We will later see that for the hypercubes Q_n one has $K_{2,3} \not\subset Q_n$ and $C^*(Q_n)$ is nuclear.

Classification

Question: When is $C^*(G) \cong C^*(H)$ for two bipartite graphs G and H?

Observation

There is a correspondence between

- ▶ 1-dimensional irreducible representations of $C^*(G)$ and edges of G,
- ▶ 2-dimensional irred. rep. of $C^*(G)$ and subgraphs $G \supset G' \cong K_{2,2}$.

Let $\operatorname{Spec}_{\leq 2}(C^*(G)) \subset \operatorname{Spec}(C^*(G))$ be the subspace consisting of (equivalence classes of) 1- and 2-dimensional irreducible representations of $C^*(G)$.

Theorem

We have $C^*(G) \cong C^*(H) \Leftrightarrow \operatorname{Spec}_{\leq 2}(C^*(G)) \cong \operatorname{Spec}_{\leq 2}(C^*(H))$.

Hypercube C*-Algebras

Let Q_n be the *n*-dimensional hypercube seen as a bipartite graph.

Recall

$$C^*(p,q) \cong C^*(Q_2) \cong \{ f \in C([0,1], M_2) : f(0), f(1) \text{ are diagonal} \}.$$

Recall the *n*-simplex $\Delta_n = \{[t_0, \dots, t_n] \in [0, 1]^{n+1} : t_0 + \dots + t_n = 1\}$. A point $\mathbf{t} \in \Delta_n$ is in the boundary of Δ_n if at least one of its entries is zero.

For every boundary point $\mathbf{t} \in \partial \Delta_n$ and matrix $A \in M_{2^{n-1}}$ we say that A is in \mathbf{t} -block diagonal form if it can be written as a block matrix where the position of the blocks depends on the position of \mathbf{t} on the boundary of Δ_n .

Theorem

$$C^*(Q_n) \cong \{ f \in C(\Delta_{n-1}, M_{2^{n-1}}) : f(\mathbf{t}) \text{ is in } \mathbf{t}\text{-block diagonal form} \}.$$

Thank you!

= ----- 11/11